
Characterizing Output Bottlenecks in a
Supercomputer

Bing Xie ∗ Jeffrey Chase∗ David Dillow† Oleg Drokin‡ Scott Klasky† Sarp Oral † Norbert Podhorszki†
∗Duke University

Durham, NC, 27708

Email: {bingxie, chase}@cs.duke.edu
†Oak Ridge National Laboratory

Oak Ridge, TN, 37831

Email: {dillowda, oralhs, klasky, pnorbert}@ornl.gov
‡Intel Corporation

Knoxville, TN, 37919

Email: oleg.drokin@intel.com

Abstract—Supercomputer I/O loads are often dominated by
writes. HPC (High Performance Computing) file systems are
designed to absorb these bursty outputs at high bandwidth
through massive parallelism. However, the delivered write band-
width often falls well below the peak. This paper characterizes
the data absorption behavior of a center-wide shared Lustre
parallel file system on the Jaguar supercomputer. We use a
statistical methodology to address the challenges of accurately
measuring a shared machine under production load and to
obtain the distribution of bandwidth across samples of compute
nodes, storage targets, and time intervals. We observe and
quantify limitations from competing traffic, contention on storage
servers and I/O routers, concurrency limitations in the client
compute node operating systems, and the impact of variance
(stragglers) on coupled output such as striping. We then examine
the implications of our results for application performance and
the design of I/O middleware systems on shared supercomputers.

I. INTRODUCTION

Output performance is crucial to harnessing the computa-

tional power of supercomputers. Some HPC applications [1],

[2], [3], [4] run on the scale of hundreds of thousands of

compute cores and produce terabyte-scale output bursts for

intermediate results and checkpointing or restart files (defen-

sive I/O). If the I/O system does not absorb the output fast

enough, then memory to buffer the output is exhausted, forcing

the computation to stall before it can output more data. Output

stalls leave precious CPU resources underutilized, extending

application runtime and compromising system throughput. We

find that output stalls are often observed in practice, even with

asynchronous writes.

One way to reduce output stalls is to add more memory and

disk spindles. But these hardware resources are expensive, and

supercomputers are designed with a careful balance of I/O and

computational capabilities. By the classical Amdahl’s rule a

balanced petaflop facility requires 128 TB/s of I/O bandwidth.

Technology planning for cost-effective deployments has used

a more austere baseline of 2 TB/s per petaflop [5], and some

systems are designed with even lower ratios.

As a result, output bandwidth is a precious resource in

supercomputers. Trends suggest that this limitation is not

likely to change. Therefore it is crucial for software to make

efficient use of the bandwidth. In principle, large write bursts

can stream effectively and achieve full bandwidth. In practice,

delivered bandwidth is highly sensitive to the application’s

use of storage APIs and its data layout, placing an unwel-

come burden on domain scientists to manage I/O performance

tradeoffs at the application level. This problem has motivated

development of adaptive I/O middleware systems, such as

ADIOS [6], [7], [8], to present a uniform API to applications

and adapt their I/O patterns to the underlying storage system.

This paper characterizes output burst absorption on Jaguar,

a 2.33 petaflop Cray XK6 housed at the Oak Ridge Leadership

Computing Center (OLCF) at Oak Ridge National Laboratory

(ORNL). Storage for Jaguar is provided by Spider [9], the

10 petabyte, 240 GB/s Lustre [10] file system at OLCF. The

key contribution of our study is to enhance understanding of

performance behaviors for state-of-the art software as currently

deployed in a leadership-class facility. One purpose of our

study is to inform ongoing development of integrated software

stacks for parallel storage including parallel file systems and

I/O middleware systems such as ADIOS. In particular, our

study is an important step toward quantitative models of stor-

age system performance behaviors for use by I/O middleware

systems. Models can guide choices made at the middleware

layer, including dynamic adaptation to “cross-traffic” from

competing workloads on shared supercomputers.

We use a sampling methodology to address challenges in

benchmarking a shared supercomputer. At the time of our

study Jaguar was the third-fastest disclosed supercomputer

in the world, serving multiple user communities. We are

unable to reserve it for exclusive use or replace any part

of its system software. We use various configurations of

the IOR benchmark [11] to focus traffic on specific stages

of the multi-stage write path. We analyze distributions of

saturation bandwidths across multiple sample trials in different

parts of the machine and at different times. These techniques

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

�����������

������

�������
�������

����
������
��

� �!
		����� "��
������

Fig. 1. The I/O burst model. An idealized iterative application computes for
time C and produces an output burst of size W on each iteration. Each burst
enters a client-side I/O cache (write buffer) of size M . The storage system
absorbs output at rate S, which varies according to various factors.

enable us to obtain a statistically valid characterization of

idealized system performance. They also enable us to quantify

the frequency and severity of adverse events that degrade

performance and/or cause differential performance behaviors.

In some cases the distributions suggest specific causes of the

behaviors we observe. Here is a summary of the primary

conclusions:

• Storage targets in the Jaguar/Spider deployment deliver

close to their full hardware bandwidth under ideal condi-

tions, but delivered performance is often highly variable.

Slow storage targets (stragglers) limit the aggregate band-

width of parallel coupled writes. The problem increases

with the degree of parallelism. More uniform contention

effects in the Jaguar interconnect are clearly visible at

larger scales, but the impact of stragglers dominates.

These results motivate adaptive selection of compute

nodes and storage targets to absorb writes. Avoiding the

worst client-target pairs has potential to more than double

aggregate bandwidth in highly parallel scenarios.

• Stragglers limit striping bandwidth and reduce the bene-

fits of parallelism. Our results suggest that convoy effects

in the Lustre clients exacerbate the problem by delaying

issue of writes to striped targets in the presence of

stragglers. On Jaguar, the peak per-client bandwidths for

writes to a single file are obtained with 4-way striping,

but they are less than half of the peak median output

bandwidths of clients for the experiments that do not

use striping. Striping performance is also sensitive to

burst size and requires very large bursts (16GB). These

results motivate a looser coupling of parallel I/O (e.g., no

striping) for mixed workloads on shared machines.

• As configured on Jaguar, the Lustre write pipelines do

not allow a single client to obtain the full bandwidth of

a storage target. The results suggest that in the ideal case

each client writes to multiple files spread across multiple

targets.

• Write-shared files show significantly lower bandwidth.

Locking injects bubbles into the Lustre write pipeline and

may cause contention in Lustre’s metadata service. These

results suggest that in the ideal case each client writes to

a different set of files.

II. BACKGROUND

It is estimated that up to 75% of I/O operations in HPC

are writes; write-heavy workoads result from state snapshots

and defensive writes (e.g., restart files), and most of this data

is never retrieved [12], [13]. The objective of this study is to

characterize the rate at which the storage system can absorb

client output. To motivate the study we introduce a simple

bounded buffer model of the impact of output burst absorption

on application performance. For the purpose of the model

suppose that the system can absorb output at a constant rate S.

In practice the rate S varies according to system parameters,

output sizes and patterns, data layout, hardware capabilities

and status, failures, and competing traffic, to name a few key

factors.

Consider a program that runs as P processes/threads on

P cores, and executes a sequence of iterations (rounds) in

a loosely synchronous fashion, in which all cores alternately

compute and output data. To simplify the model, suppose

further that computational load and output are evenly balanced

across the processes and iterations. In each iteration the

program computes for time C and then outputs a burst of

size W .

We further suppose that the program has at its disposal

M bytes of client-side I/O buffer space (I/O cache) to store

its output burst until the storage system can absorb it. Each

process buffers its output from an iteration by copying it into

the local I/O cache; if there is insufficient space in the cache

then the process blocks until space is available (an output

stall). The next iteration begins after the previous output burst

enters the cache. Each client node pushes its buffered output

asynchronously to the storage targets to overlap the writes to

storage with computation.

Given our idealized assumptions we may express the pa-

rameters M,W,C, and S as per core, per node, or globally

across the entire job or machine.

Real systems and applications may deviate from this simple

idealized model in various ways. For example, the system

may delay writes and/or M may vary according to the client

strategies for managing the I/O cache. Even so, the model is

useful to guide our intuition and estimate the impact of S
on output stalls and on application performance. In particular,

output stalls limit core efficiency, which is the maximum rate

x of useful computation normalized to the machine’s peak;

equivalently, x is an upper bound on mean CPU utilization.

With core efficiency x the computation stalls at rate 1 − x,

and runtime increases by a factor of 1/x from the ideal.

Figure 1 illustrates the model. The program produces output

into a bounded buffer of size M at an average rate W

C
, not

counting any output stall time. The storage system drains data

out of the cache at rate S. There are two cases to consider:

Case 1. W

C
<= S. The program produces data at an average

rate that is slower than the drain rate. If W <= M then the

program does not stall. Otherwise, if W > M , the program

fills the buffer and then stalls until the rest of the burst is

absorbed. The stall time per iteration is W−M

S
.

Case 2. W

C
> S. The program produces data at an average

rate that is faster than storage can absorb it. Once the buffer

fills, the program reaches a steady state behavior in which it

stalls W−SC

S
per round to throttle the output rate to match the

drain rate. SC is the data drained from the cache during the

�������� �	
���

�
���� ��������� ��������
�������

�����
�������

������

������

������

Fig. 2. The multi-stage write path in Jaguar/Spider. Writes originate in
16-core client nodes; each client issues RPCs to storage servers through the
internal Gemini interconnect and external SION storage network. The server
buffers each write and directs it to an attached RAID target. Any client may
write to any target; all writes to a given target pass through a single server.

compute time. W − SC is the residual that must be absorbed

before the next round can begin. The time to reach the steady

state is proportional to M . Once the program reaches steady

state, the value of M no longer matters because the buffer is

full at the end of each round, and SC < M , else we are in

Case 1.

It is easy to see that C is immaterial and the maximum

efficiency of the machine is given by the ratio of the drain

rate to the fill rate. Suppose we normalize the fill rate to one

unit of output data per second. In Case 2 the drain rate is x
with 0 < x < 1. Then the program produces an excess of

1 − x units of output data per second of useful computation,

requiring an output stall of (1 − x)/x per second of useful

computation to absorb the excess output. The CPU utilization

is then the compute time (1) over the total time (1+(1−x)/x).

Thus the core efficiency is bounded by x.

Anecdotal evidence from the ADIOS group indicates that

output performance observed by real applications is often

lower than expected when running on Jaguar at scale. The

result distributions reported in this study confirm that delivered

performance of output absorption varies within a wide range

on Jaguar. The model is useful for predicting the impact of

low output bandwidths on application runtime. Applications

may compensate by reducing their output frequency, but this

presents a tradeoff of recovery times given the failure rates on

supercomputers [14].

Although some factors may be unique to Jaguar, we expect

that our observations are representative of leadership-scale

computing facilities, and I/O performance problems are com-

mon. ADIOS implements a variety of techniques to improve

I/O performance, and many applications that have encountered

these problems in production runs now use ADIOS, e.g.,

S3D [1], XGC [15] and M8 earthquake simulation[16]. For

example, ADIOS enables applications to configure their output

buffer size M . It can issue writes to multiple independent files

to avoid performance problems associated with write-shared

files and striping and it reorganizes output data for better read

performance. The results in this study provide a foundation to

understand and quantify the impacts of these techniques.

A. Lustre on Jaguar and Spider

The Lustre software deployed on Jaguar is a widely used

open-source parallel file system. Lustre runs on about half of

the top 30 disclosed supercomputers. This section introduces

terms and concepts used in the performance study, summariz-

ing from [17] and other sources on Lustre and Jaguar.

Lustre is an object-based file system: the data in each Lustre

file resides in one or more objects. An object is a variable-

length sequence of bytes with a unique name. Each object

is part of exactly one file and resides on exactly one storage

node. A storage node is a RAID array (target) that is direct-

attached to a Lustre storage server. Lustre clients are compute

nodes that access the storage servers over a network. A Lustre

metadata service manages the file name space, file attributes,

mappings of files onto objects, and locking for shared access

to objects by multiple clients.

Figure 2 depicts the Lustre write path as it is configured on

Jaguar and Spider, a center-wide file store hosting a group of

Lustre file systems shared across Jaguar and other computing

facilities in the center. A Cray Gemini 3D torus interconnect

supports messaging among the nodes. The compute nodes

access external storage through 192 I/O nodes, which are

also attached to the Gemini interconnect. The I/O nodes

bridge the internal interconnect to an external storage network

called SION (Service I/O Network), a multi-stage InfiniBand

network. The SION network provides access to Spider, which

comprises 192 storage servers, each mediating access to 7

RAID storage targets (block device LUNs).

Each Lustre write originates with a system call from a user

process on a compute node. Each Jaguar compute node is

a multi-core node running a Linux operating system, which

maintains the node’s file cache as its output buffer. The

compute node kernel invokes a local Lustre kernel module

called Object Storage Client or OSC to handle file operations

and I/O on Lustre file systems. The OSC performs I/O by

issuing Lustre RPC calls to storage servers; each storage

server runs a Linux system with a Lustre service called Object

Storage Service or OSS. Each Lustre I/O operation to an OSS

is a read or a write on exactly one object, which resides on a

named storage target attached to that OSS. The Lustre targets

are known as Object Storage Targets or OSTs. We use the

terms client, server, and target to refer to the OSC, OSS, and

OST respectively.

Our experiments run on Widow1, a Lustre file system

residing on 672 of the Spider storage targets. We measure

write bandwidths to files after they are open, so the metadata

service affects the results only for the write-shared file tests

(Figure 11).

B. Lustre Data Striping

A file is a sequence of bytes or fixed-size logical blocks.

In Lustre, the blocks of each file are distributed across a

fixed set of N storage objects, determined when the file is

created. The objects in the set are numbered in a sequence. The

current policy assigns the objects in sequence to sequentially

numbered targets (OSTs). Lustre allows the user process that

�������� �������	 �������
 ��������

�
�
����

���
��� ������
������
����

�� �� �� �	 �
 �� �� �� ��

���
��� ������

������

�

��
�	

�������

��

��
�

������� �������

��
��

��
��

�

Fig. 3. Data Striping in Lustre. Each file is a sequence of chunks
of stripe size bytes each, distributed round-robin across a fixed set of
stripe width objects created for the file on sequentially ranked targets (OSTs).

creates the file to specify the starting OST, otherwise the

system selects the starting OST at random. The Metadata

Server (MDS) creates the object set and stores a list of the

file’s objects while the file exists. When a client opens a file

it fetches the object list and caches it while the file is open.

The logical file blocks are striped across the file’s objects

according to a static pattern. Figure 3 depicts an example of

this pattern. Sequential runs of blocks are grouped into fixed-

size chunks, and the chunks are assigned to the objects in a

round-robin fashion. The chunk size of a file is called the

“stripe size”, and the number of objects in the set (N) is

called the “stripe count” or stripe width. A stripe is an aligned

sequential run of N chunks.

When a client grows a file by appending bytes to it, it creates

and appends new stripes as needed. Each new stripe extends

the length of the objects in the object set: the number of objects

is fixed for each file, but the objects grow as needed. This

policy differs from systems such as Ceph [18], which grow a

file by appending new fixed-size objects to it.

C. The Write Path

We summarize the write path for ordinary asynchronous I/O.

A Linux write system call copies data from the user process

into page buffers in the client kernel’s I/O cache, blocking

(stalling) if the amount of dirty data in the cache exceeds a

threshold. The system call path allocates 4KB pages (blocks)

in sequence and aligns the data within the buffers according

to their logical offset. We consider only the case in which the

process writes (or overwrites) each block in its entirety; we

do not consider read/modify/write behavior.

As dirty blocks accumulate in the cache, the client (OSC)

groups them into chunk writes. The client targets each dirty

block to a specific offset in a specific chunk in a specific object

on a specific OST on a specific OSS, according to the striping

policy summarized above. The client issues concurrent RPC

calls to the servers to write the chunks (or partial chunks) to

their targets, releasing the buffers as the writes complete. A

write completes on a target when the data is safe on disk.

�����������	
��������
�

������ ������

�������������	
������������

��������
�������������������������
	
���������

������������� ������������	
��� ��!"� #��������������

$�����������������

 ����%��������

�����������������������

%��������&����	 '#

������������

�������	
������������

Fig. 4. RPCs and flow control for asynchronous writes in Lustre. The
client sends an RPC for each write to the object server for the target. The
server replies to accept the write and sends a completion notice later when it
completes. The client bounds the number of outstanding RPCs and the total
size of outstanding writes to each target (a configurable “grant”).

The Lustre OSC module manages concurrent write pipelines

to multiple servers and targets. Similarly, each OSS must

manage concurrent write pipelines from many clients. A key

design challenge is to keep all pipelines flowing whenever

there is data to transfer, throttling them just enough to prevent

any buffer overflow.

Lustre clients and servers coordinate to control data flow

through the pipelines for normal asynchronous writes. For

example, on Jaguar each client limits the number of RPCs in

flight on each target to 8. Each client also limits its pending

(incomplete) writes on each target. Figure 4 depicts the steps

to generate and process a chunk write request on a given target.

Application processes may request synchronous I/O by

opening a file with a specific option flag (O DIRECT). Direct

writes use different mechanisms with less asynchrony [17].

III. METHODOLOGY

This section introduces a statistical benchmarking method-

ology, including two parts: targeted focus on specific stages

of the write pipeline and statistical analysis across multiple

trials. We use IOR [11], a flexible synthetic benchmarking

tool for parallel file systems with various interfaces and access

patterns. We configure IOR to coordinate simultaneous write

bursts from multiple processes and report delivered bandwidth

after all data reaches the disks. Each run specifies the number

of compute nodes, the number of cores per node, the number

of output files, striping parameters, and burst sizes and counts.

Our approach is designed to overcome challenges of bench-

marking in a production environment on shared hardware.

There is no monitoring in the various stages of the write path,

so we design the runs to focus traffic on specific stages to mea-

sure their performance behaviors. Performance is sensitive to

location, but we cannot control the compute nodes for our runs:

the system’s batch job scheduler chooses them “randomly”

for each run. In addition, our runs are subject to interference

and noise from competing traffic and other transient system

conditions that we cannot foresee or detect [8].

��
��������

��
�!"��

�
�"�

��
�#����$���

�

� �

� ��

Fig. 5. Benchmarking Hierarchy. The graphs plot distributions of results
across multiple trials on sampled clients and targets at different times. A round
is discarded if conditions change significantly during the round.

To overcome noise and randomness, we obtain a distribu-

tion of measures across samples of compute nodes, shared

resources and time intervals. Each experiment is a set of IOR

jobs measuring the impact of a single parameter on delivered

bandwidth under some set of conditions. The parameters

include the number of compute nodes (N), the number of

OSTs (T), parameters to the job script such as the number of

cores per client, or parameters to the IOR benchmark such as

burst size. Figure 5 depicts the structure of an experiment.

• Each IOR job execution is an instance of the experiment

across a sample of N compute nodes and T storage

targets (OSTs). The job scheduler selects the compute

nodes. The instance selects the start target randomly. Each

process in an instance issues a single write burst. A burst

is a single POSIX write system call, or a loop of write

system calls if the burst size exceeds the maximum 1GB

for an individual write. The burst from each process is

synchronized with the other processes using MPI barriers,

and is followed by an fsync, which blocks until all writes

in the burst complete.

• A sequence of instances of an experiment is called a

round. The instances within each round vary the value

of a single parameter across a sequence of values; all

other parameters are fixed across all instances of each

experiment. We submit one instance at a time to the job

scheduler, and wait a minimum of 5 seconds after the

instance completes before submitting the next instance.

• Each run of an experiment is a sequence of identical

rounds. We observe that traffic on Jaguar tends to vary

little within a run, but may vary significantly across runs.

Each experiment produces a set of points, each giving the

output bandwidth measured for one instance. The graphs use

box plots to display the quantile distribution and “whiskers”

of outliers of sample points. By focusing on the distributions

we can quantify the noise and distinguish fundamental perfor-

mance behaviors from the noise.

The plots report output bandwidths using four different

measures over the same data:

• Bandwidth is measured in MB/s per client node.

• Aggregate Bandwidth, measured in MB/s, is bandwidth

summed across all nodes in an instance.

• Effective Bandwidth (EB) is per-node bandwidth normal-

ized to the peak bandwidth achievable from the number

of targets written by the node. We use an estimated peak

of 300 MB/s for a Spider target (see Section IV).

• Effective Aggregate Bandwidth (EAB) is aggregate band-

width normalized to the peak bandwidth achievable from

the number of targets written by the instance.

IV. OUTPUT ABSORPTION ON JAGUAR

This section presents the measurements of burst absorption

behavior on Jaguar and Spider (widow1). Our analysis is

based on measurements taken in early 2012, after Jaguar was

changed from 12 to 16 cores per node, and the interconnect

was upgraded to Cray’s Gemini NIC from SeaStar 2+. We

used half (120 GB/s) of the available storage from Spider

(Widow1). The achievable aggregate I/O bandwidth is further

limited due to congestion on the Cray 3D torus and the

InfiniBand fabric, resulting from the Lustre routing algorithms

in use during our measurement period [9].

We present the data in a sequence of graphs with multiple

boxplots arranged along an x-axis. Each point in each boxplot

corresponds to an instance, as described in the previous

section. Each round produces one point for each boxplot in

the graph. Most experiments have 50 runs with 5 rounds each.

For one long-running experiment we reduce the total number

of rounds to 200 (for Figure 13).

A. Pipeline Efficiency

The first experiment evaluates the efficiency of the write

pipeline from a single client to a single target, as a function

of burst size. Figure 6 gives the results.

Understanding the boxplot graphs. Figure 6 is repre-

sentative of the box-and-whisker graphs used to report the

results of each experiment. The x-axis shows the range of

values of the single parameter that varies across the instances

of the experiment, as described in Section III. The boxplot

for each x-value reports the distribution of measured output

bandwidths, given on the y-axis. The upper and lower borders

of each box are the 25th and 75th percential values (lower

quartile Q1 and upper quartile Q3). The band within each box

denotes the median value. The value Q3-Q1 is the interquartile

range or IQR; thus 50% of the y-values reside within the box,

and the IQR is the height of the box. The upper and lower

whiskers cover the points outside of the box, except that the

upper and lower bounds of the whisker do not extend beyond

Q3+1.5∗IQR and Q1−1.5∗IQR respectively. All y-values

outside of this whisker range are outliers and are plotted as

individual points.

Figure 6 shows that single-pipeline bandwidth is sensitive

to burst size, and that the write pipeline obtains its maximum

overall bandwidth with a write burst of 2 GB or more. With

these burst sizes the pipeline runs at full bandwidth for long

enough to dominate the time to fill and drain the pipeline.

The results suggest that the conservative flow control config-

uration for output pipelines on Jaguar (e.g., max 8 outstanding

RPCs) prevents a single client from obtaining the full band-

width of the target. This behavior may result from delayed

1M 4M 16M 64M 256M 1G 4G 16G
0

50

100

150

200

250

300

350

400
B

an
dw

id
th

, U
ni

t:M
B

/s

Fig. 6. Single-pipeline bandwidth as a function of burst size. The peak
median bandwidths are around 75% of the peak median saturation bandwidth
of the targets (Figure 7). This graph shows results for a single process on
a single core writing a single file on the target. Other results (not shown)
indicate that more client processes do not help: the configured pipeline is not
deep enough for one client to obtain full bandwidth from a target.

RPC replies from the targets related to recent enhancements

for asynchronous journaling (see [10]).

We ran additional experiments using multiple cores on each

client to the same target; the multi-core experiments run mul-

tiple single-threaded IOR processes on the same client, each

issuing a single output burst to a separate file, synchronized

with MPI barriers. However, using multiple cores per client

improves bandwidth by at most 5% with asynchronous I/O.

Figure 6 also shows that many trials deliver low band-

widths, presumably due to noise from competing workloads

or other system conditions. Results from individual clients

show substantial outliers on the low side (3% to 5% of

all samples). The next section shows that the incidence of

these low outliers decreases as we add more clients (e.g., see

Figure 7), suggesting that they are caused by transient severe

contention between a client and its I/O router, or within the

I/O router, rather than in the SION network, server, or target.

B. Write Bandwidth of OSTs

The next experiments use multiple clients to focus writes

on a single target (OST) to measure their peak bandwidths at

saturation. The OST saturation experiments follow the tem-

plate in Figure 8, in which multiple clients write coordinated

bursts to the same target. Figure 7 shows the results for large

bursts from modest numbers of clients, which generally yield

the highest bandwidths. We take 300 MB/s (96th percentile)

as the peak OST bandwidth in practice, although a few trials

deliver close to the hardware bandwidth of the targets under

ideal conditions.

In Figure 7 the peak target bandwidths are reasonably stable

for all burst sizes. Low-side outliers decrease with both of the

number of clients and the size of bursts, suggesting that the

results are dominated by contention within Jaguar rather than

contention at the target or its disk system.

1 2 4 8 16 32
0

50

100

150

200

250

300

350

400

No.Clients

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

Fig. 7. Write bandwidth of a target at saturation as a function of the
number of clients. For each fixed number of clients, we plot distributions
for the time to absorb a simultaneous burst of 64MB, 256MB and 1024MB
from each client (red, green and blue boxes respectively). The small number
of outlier points relative to Figure 6 suggests that observed I/O contention
occurs mostly within Jaguar itself rather than on SION or Spider.

������

��	�
�	��
	
��������
����
����
�

��������
����������

Fig. 8. Template for target saturation experiments. Multiple client
processes focus simultaneous output bursts (with 64M, 256M, 1024M burst
sizes) on a single OST to measure the peak bandwidth of the target at
saturation. Each process writes a different file on the OST.

The storage servers (OSS) in the Jaguar/Spider deployment

deliver less than the nominal aggregate bandwidth of their

attached targets, due at least in part to design choices in pro-

visioning the network. Individual applications are unlikely to

observe a bottleneck because the interleaved OST numbering

places sequentially numbered targets on successive servers.

Thus the default policies stripe each file across the maximal

number of servers. We do not quantify it in this paper.

C. Output Bandwidth of Compute Nodes

The next experiments probe the output bandwidth observed

by a client writing simultaneously to multiple targets. These

experiments test fan out parallelism in which the client man-

ages concurrent pipelines to multiple targets. We compare two

forms of fan-out parallelism: (1) writes to a single striped

file and (2) simultaneous writes to multiple unstriped files.

The purpose is to determine how effectively a client manages

the concurrency to keep all of its pipelines full: to stream

writes, the client must respond to an incoming RPC reply or

completion notice by pushing more output into the pipeline to

%����$������
������

�
�!��
��
�
������

������
 ������
 ������
 ������

Fig. 9. Template for striping bandwidth experiment. A single process
issues a write burst to a single file that is striped across multiple OSTs
(stripe count targets) at a granularity (stripe size) of 1MB, which is ideal.
the burst sizes are separately 1GB, 4GB and 16GB.

keep it full. Synchronization bottlenecks or internal threading

limitations may cause reaction delays, leaving bubbles in the

pipeline that reduce delivered bandwidth.

The first experiment follows the template in Figure 9: a

single process issues asynchronous write bursts to a file striped

across a varying number of storage targets (stripe count), with

burst sizes of 1GB, 4GB and 16GB. The chunk size is 1 MB.

We determined that the 1MB size is a good choice based on

other experiments not reported here: delivered bandwidth with

striping is insensitive to stripe size up to 32MB, at which point

it begins to decline.

Figure 10 shows the measured bandwidths from this ex-

periment, yielding a peak bandwidth of 518.46 MB/s. This

peak striping bandwidth is substantially lower than the peak

of 800-950 MB/s that we might have expected by extrapolating

from Figure 6. The result also indicates that 16GB bursts

always obtain the highest observed bandwidth, suggesting that

large bursts can use the coordinated pipelines more efficiently.

Additionally, increasing stripe width beyond four targets does

not increase bandwidth for any burst size. We presume that

this effect results from the higher likelihood of encountering

straggler OSTs with wider stripes: the bandwidth of striping

is gated by the slowest target, offsetting the benefits of higher

parallelism. Stragglers are discussed below.

To determine whether the limitation is related to striping, the

next experiment writes independent files on multiple targets,

following the template in Figure 12. Multiple IOR processes

on the same client node write synchronized bursts to multiple

unstriped files. Each process writes to a different file on a

different OST from the others. We expect that each process

executes on a separate core.

Figure 13 shows the results. The client node obtains sub-

stantially higher bandwidth than it does using striping: 1GB,

4GB, 16GB overall write size (16 cores with 64MB, 256MB

and 1GB each) can all obtain more than 1200MB/s, more than

twice the peak bandwidth obtained by the identical write size

with a fan-out of four targets. Hence, the results suggest that

striping delivers substantially lower output bandwidths than

the compute node is capable of. We discuss this further below.

Figure 13 also indicates that a single client performs well

when issuing independent pipelines and scales up to 14 cores.

1 2 4 8 16 32 64 128
0

100

200

300

400

500

600

No.Targets

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

Fig. 10. Single-client striping bandwidth as a function of the size of
bursts or stripe count. For a fixed number of targets, we issue 1GB, 4GB
and 16GB bursts and represent their results with the red, green and blue
boxplots respectively. The maximum bandwidth obtained in this experiment
is 518.46MB/s, which is obtained by 16GB burst with four targets.

D. Many-Pairs Bandwidth and Stragglers

To measure aggregate I/O bandwidths achievable, we ran

at-scale tests using multiple processes on different clients, si-

multaneously writing to varying numbers of targets, Figure 14

illustrates the template for this experiment. Each client writes

to a different target, and we vary the number of client-target

pairs. At the largest scale we use 672 compute nodes to write

to all 672 targets in widow1. This experiment uses a burst size

of 64 MB.

Figure 15 and Figure 16 summarize the results. Although

the raw peak bandwidths are impressive with more pairs, the

results are highly variable across runs, and the overall output

bandwidth utilization is low.

A key factor in this experiment is the variance in completion

time for the pairs. The bursts for all pairs are synchronized,

and the time interval for the aggregate bandwidth computation

is the completion time of the slowest pair. In each instance

of the experiment some pairs complete quickly while others

are “stragglers” that limit the computed aggregate bandwidth.

The impact of stragglers grows rapidly as we increase the

number of pairs. Stragglers may be caused by bottlenecks in

the interconnect, and not necessarily in the targets themselves.

The straggler phenomenon also partly explains the reduced

bandwidth of striping, relative to bandwidth obtained by issu-

ing bursts to multiple independent files. The striping pipeline

is gated by the slowest of the stripe count targets employed

for a striped file.

To quantify the impact of stragglers, Figure 17 plots the cu-

mulative distribution of delivered bandwidth across all client-

target pairs for each instance of the experiment. To make the

data more descriptive we convert the bandwidth of each pair

to the completion time.

In all cases, more than 95% of the synchronized bursts

2 8 32 128
0

50

100

150

200

250

300

350

400

No.Clients

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

The Results of 1M Bursts

2 8 32 128
0

50

100

150

200

250

300

350

400

No.Clients

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

The Results of 16M Bursts

2 8 32 128
0

50

100

150

200

250

300

350

400

No.Clients

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

The Results of 256M Bursts

Fig. 11. The bandwidth of a single target with a shared file as a function of the number of clients. Three subfigures separately represent the results
of 1M, 16M and 256M bursts. In each figure, the red boxes are the results of the synchronized bursts to a single file on the target; the green boxes are the
results of the identical bursts to independent files on the target. The observed bandwidths of the shared file with different bursts are consistently lower than
those of independent files. Write sharing reduces delivered bandwidth by up to a factor of two, due to output pipeline bubbles while a client waits to acquire
the necessary locks.

%����$������
������

$"������
�!���
��
�
������

������ ������ ������ ������

Fig. 12. Template for client saturation experiment. Multiple cores
(processes) write a coordinated simultaneous burst to multiple targets. The
sizes of bursts are respectively 64MB, 256MB and 1024MB. This experiment
probes the output limitations of the client for normal asynchronous I/O, but
without the complexity of striping.

1 2 4 7 10 14 16
0

200

400

600

800

1000

1200

1400

1600

No.Targets

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

Fig. 13. Output bandwidth of a compute node as a function of the number
of cores (process-OST pairs) employed, using the template of Figure 12. The
client obtains much higher bandwidths by writing multiple independent files
than it does using Lustre striping (Figure 10). This result suggests that striping
increases the impact of stragglers, e.g., stragglers block the write pipeline and
slow the issue of writes to the faster targets (a form of convoy effect).

complete in 2 seconds, but almost every trial has a tail of

stragglers. Other pairs are idle while waiting for the stragglers

to finish. Aggregate bandwidth is computed over the entire

run, which is the completion time of the slowest straggler.

As the number of pairs increases, the completion time of the

stragglers also increases substantially. Using all 672 targets,

even the completion times of the fastest pairs are noticeably

greater, indicating that the run has triggered congestion in

intermediate stages, uniformly affecting all pairs.

These results reflect substantial problems with load balanc-

ing in large shared production machines, motivating a looser

coupling of parallel I/O pipelines and dynamic selection of

compute nodes and targets based on system conditions.

E. Impact of Write Sharing

The next experiment investigates the bandwidth of a single

shared target as a function of the number of clients writing to

the file, for both shared files and multiple independent files.

The experiments use the template in Figure 8, except that we

use burst sizes of 1MB, 16MB and 256MB, and we run the

experiment for shared files as well. For the sharing tests each

client writes an independent region of the same file.

Figure 11 shows that the observed bandwidths with a write-

shared file are always lower than those with independent files

with the same burst size. Moreover, with smaller burst sizes

the cost increases quickly with larger numbers of clients.

These results reflect the impact of locking, which is nec-

essary when multiple clients write-share a file. Lustre uses

locking to synchronize accesses to each file from multiple

clients. In particular, Lustre object servers support range lock-

ing on objects at the granularity of 4KB blocks. Lustre grants

object locks greedily to reduce overhead. A client requests an

exclusive lock covering the block range of any expected write.

The server grants a lock on the maximal enclosing range that

is free of conflict with any lock held by another client. If

the requested range conflicts with an existing lock, then the

server calls back to the lock holder to reclaim the lock on

any conflicting part of the range. The lock holder flushes any

pending writes on the reclaimed range before releasing the

������

�	
���

��������
����������

������ ������ ������

�	
��� �	
��� �	
���

Fig. 14. Template for the many-pairs experiments. Each client node runs
a process that issues a 64 MB burst to a separate unstriped file on a selected
target. Each client uses a different target. The bursts are synchronized. We
vary the number of client-target pairs and measure aggregate bandwidth and
the bandwidth (or completion time) for each client-target pair.

100 336 672
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

No.Clients

A
gg

re
ga

te
 B

an
dw

id
th

 U
ni

t:M
B

/s

Fig. 15. Many-pairs bandwidth on Widow1. Using the experiment template
in Figure 14, we obtained about 30 GB/s (36.5 GB/s peak) of aggregate output
bandwidth using all 672 targets of Widow1. Aggregate bandwidth is highly
variable across multiple runs of this experiment, and varies across more than
a factor of three using all pairs.

lock. This locking scheme borrows from the approach used in

VAXClusters [19].

V. OTHER RELATED WORK

Many studies have investigated the performance of HPC

file systems. Benchmarking studies commonly take two ap-

proaches.

One approach is to measure the performance of file systems

under real application workloads. Several influential studies

were published in the 1990s [20], [21],[22], [23], [24]. A

significant recent study installs continuous monitoring soft-

ware on compute nodes to characterize the I/O requests of

real application workloads in real time, modulating the data

collected to keep overhead within acceptable limits [25] [26].

Uselton et al. [27] also propose a statistical method col-

lect and analyze I/O events to more fully characterize the

I/O behavior of ensembles. They also observe the straggler

phenomenon, suggesting that the straggler problem is a general

issue in supercomputers. Their work focuses on improving the

100 336 672
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

No.Clients

E
A

B

Fig. 16. EAB of the many-pairs experiment. This EAB plot shows the same
data as Figure 15, but normalized to the nominal potential bandwidth of the
targets. With 100 client-target pairs the delivered bandwidth falls below 40%
of what could be achieved if all targets yield their expected bandwidths. The
results degrade with larger numbers of pairs. Figure 17 shows that interconnect
bandwidth is a factor, and stragglers gate the delivered bandwidth.

I/O performance of a given application in a given supercom-

puter system. Our goal is to characterize the multi-stage write

pipeline in a petascale file system, and locate write absorption

bottlenecks that influence design choices and configuration

choices for adaptive middleware and HPC applications.

A second approach is to stress the file systems with synthetic

benchmarks. A number of HPC I/O benchmarks are designed

to be sufficiently flexible to emulate the typical I/O behaviors

in supercomputer environments, such as FLASH I/O, IOR,

BTIO benchmark, etc. This flexibility enables users to con-

figure the benchmark for a desired pattern approximating an

observed application behavior. In our work, we take IOR as a

generator and run different patterns and configurations to focus

traffic on specific stages and elements of the write pipeline

to gain a complete picture of output burst absorption in a

production facility.

A recent study [28] uses a similar methodology to measure

the performance of the Intrepid file system at the Argonne

Leadership Computing Facility. The authors report the capac-

ity of each I/O stage and measure the behavior of the entire

subfile system for large-scale runs of a set of benchmarks.

The measurements are taken on dedicated hardware before the

supercomputer system was running in production mode. Our

work explores the delivered bandwidth of the I/O stages in

the production runs and with the consideration of competing

workloads.

Earlier studies also use configurations of the IOR bench-

mark to analyze the behavior of HPC systems [29] [11]. The

recent paper by Kim et al. [30] also collects I/O performance

from Jaguar. That study is complementary to ours: they

report monitoring data from the storage servers showing the

combined workload on the machine. We focus on the behavior

observed by individual jobs, and the impact of write patterns

0 0.5 1 1.5 2 2.5
0

0.5

1
100 Clients to 100 Targets

0 0.5 1 1.5 2 2.5
0

0.5

1
336 Clients to 336 Targets

0 0.5 1 1.5 2 2.5
0

0.5

1

Response Time Unit: sec

672 Clients to 672 Targets

Fig. 17. CDF of completion times for the instances of the many-pairs

experiment. Each CDF has 250 lines, one for each trial of the instance. Each
line shows the distribution of completion times for the pairs of each trial.
Each line for the three instances has 100, 336, and 672 points respectively. It
is easy to see that almost every trial has good performance in some parts of
the machine, as well as stragglers that limit the computed bandwidth.

and I/O configuration choices.

VI. CONCLUSION

I/O bandwidth is a scarce resource on supercomputers.

Output burst absorption can have a substantial impact on de-

livered performance, as demonstrated by a simple performance

model. Observed output bandwidth is sensitive to how the

application and I/O middleware uses the storage system APIs.

Our study offers a methodology to predict the impacts that

result from hardware limitations and file system configuration

in a particular facility, by configuring IOR to stress each stage

of the write pipeline in turn across a range of parameters.

We apply this approach to map Lustre filesystem output

performance in the Jaguar/Spider facility. The measured distri-

butions also quantify the frequency and severity of contention

and other transient system conditions. The impacts of these

factors are less predictable. Their prevalence motivates adap-

tive responses in the I/O middleware layer, and structuring

choices to loosen the coupling of parallel I/O to maximize the

benefits of adaptation.

For example, on Jaguar/Spider under typical conditions, the

peak median output bandwidths are obtained with parallel

writes to many independent files, with no write-sharing or

striping, and with each target storing files for multiple clients,

and each client writing files on multiple OSTs. This structure

is robust to modest burst sizes. More importantly, it offers

opportunities for adaptive selection of I/O targets to reduce

the impact of stragglers, which can reduce delivered output

bandwidth by more than a factor of two.

Our study also suggests that delivered bandwidth is in-

creasingly sensitive to concurrency bottlenecks in the client

file system software, which faces the challenge of driving

concurrent output pipelines to multiple storage targets. This

challenge grows with the number of cores and storage targets.

Acknowledgements: This research used resources of the Oak

Ridge Leadership Computing Facility, located in the National

Center for Computational Sciences at Oak Ridge National

Laboratory, which is supported by the Office of Science of the

Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

[1] L. Chacón, “A non-staggered, conservative, finite-volume scheme for
3D implicit extended magnetohydrodynamics in curvilinear geometries,”
Computer Physics Communications, vol. 163, no. 3, pp. 143 – 171, Nov.
2004.

[2] C. S. Chang and S. Ku, “Spontaneous rotation sources in a quiescent
tokamak edge plasma,” Physics of Plasmas, vol. 15, no. 6, June 2008.

[3] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical
simulations of turbulent combustion using S3D,” Computational Science

and Discovery, vol. 2, no. 1, Jan. 2009.
[4] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney,

“Grid-based parallel data streaming implemented for the Gyrokinetic
Toroidal Code,” in Proceedings of the 2003 ACM/IEEE conference on

Supercomputing (SC ’03), Phoenix, AZ, Nov. 2003.
[5] D. Nowak and M. Seagar, “ASCI terascale simulation: requirements and

deployments,” in ASCI, Nov. 1999.
[6] Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, R. Grout, N. Podhorski,

Q. Liu, W. Yandong, and Y. Weikuan, “EDO: improving read perfor-
mance for scientific applications through elastic data organization,” in
Proceedings of IEEE Cluster 2011, Austin, TX, Sep. 2011, pp. 93–102.

[7] J. Lofstead, Z. Fang, S. Klasky, and K. Schwan, “Adaptable, metadata-
rich I/O methods for portable high performance I/O,” in Proceedings

of the 2009 IEEE International Symposium on Parallel and Distributed

Processing (IPDPS’09), Rome, Italy, May 2009.
[8] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,

K. Schwan, and M. Wolf, “Managing variability in the I/O performance
of petascale storage systems,” in Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC’10), Washington, DC, Nov. 2010.
[9] D. A. Dillow, G. M. Shipman, H. S. Oral, Z. Zhange, D. Z. Zhang, and

Y. Kim, “Enhancing I/O throughput via efficient routing and placement
for large-scale parallel file systems,” in Performance Computing and

Communications Conference (IPCCC), Nov. 2011.
[10] S. Oral, F. Wang, D. Dillow, G. Shipman, R. Miller, and O. Drokin,

“Efficient object storage journaling in a distributed parallel file system,”
in Proceedings of the 8th USENIX Conference on File and Storage

Technologies (FAST ’10), San Jose, CA, Feb. 2010, pp. 143–154.
[11] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the

I/O performance of HPC applications using a parameterized synthetic
benchmark,” in Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing (SC ’08), Austin, TX, Nov. 2008.
[12] Y. Kim, G. R., S. G.M., D. D. Z. Zhang, and B. Settlemyer, “Workload

characterization of a leadership class storage cluster,” in Petascale Data

Workshop (PDSW), New Orleans, LA, Nov. 2010.
[13] A. Uselton, K. Antypas, D. M. Ushizima, and J. Sukharev, “File system

monitoring as a window into user I/O requirements,” in Proceedings of

the 2010 Cray User Group Meeting, Edinburgh, Scotland, May 2010.
[14] B. Schroeder and G. A. Gibson, “A large-scale study of failures in

high-performance computing systems,” in Proceedings of the Interna-

tional Conference on Dependable Systems and Networks (DSN ’06),
Philadelphia, PA, June 2006, pp. 249–258.

[15] S. Ku, C. S. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes,
S. Klasky, W. Lee, Z. Lin, S. Parker, and the CPES team, “Gyrokinetic
particle simulation of neoclassical transport in the pedestal/scrape-off
region of a tokamak plasma,” Journal of Physics, vol. 46, no. 1, 2006.

[16] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten,
G. Ely, D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and
P. Maechling, “Scalable earthquake simulation on petascale supercom-
puters,” in Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,
ser. SC’10, Washington, DC, Nov. 2010.

[17] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and I. Huang, “Un-
derstanding Lustre filesystem internals,” Technical Report ORNL/TM-

2009/117, Apr. 2009.
[18] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,

“Ceph: a scalable, high-performance distributed file system,” in Pro-

ceedings of the 7th Symposium on Operating Systems Design and

Implementation (OSDI ’06), Seattle, WA, Nov. 2006, pp. 307–320.
[19] N. P. Kronenberg, H. M. Levy, and W. D. Strecker, “VAXcluster: a

closely-coupled distributed system,” ACM Trans. Comput. Syst., vol. 4,
no. 2, pp. 130–146, May 1986.

[20] A. L. N. Reddy and P. Banerjee, “A study of I/O behavior of perfect
benchmarks on a multiprocessor,” SIGARCH Comput. Archit. News,
vol. 18, no. 3a, pp. 312–321, May 1990.

[21] G. R. Ganger, “Generating representative synthetic workloads: an un-
solved problem,” in in Proceedings of the Computer Measurement Group

(CMG) Conference, Nashville, TN, Dec. 1995, pp. 1263–1269.
[22] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best,

“File-access characteristics of parallel scientific workloads,” Parallel and

Distributed Systems, IEEE Transactions on, vol. 7, no. 10, pp. 1075–
1089, 1996.

[23] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural
requirements of parallel scientific applications with explicit communi-
cation,” SIGARCH Comput. Archit. News, vol. 21, no. 2, May 1993.

[24] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/Output
characteristics of scalable parallel applications,” in Proceedings of the

1995 ACM/IEEE conference on Supercomputing (SC ’95), San Diego,
CA, Dec. 1995, pp. 59–89.

[25] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale I/O workloads,” in IEEE Interna-

tional Conference on Cluster Computing (Cluster ’09), New Orleans,
LA, Sep. 2009.

[26] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” Trans. Storage, vol. 7,
no. 3, Oct. 2011.

[27] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf,
K. Karavanic, and L. Oliker, “Parallel I/O performance: from events
to ensembles,” in IEEE International Symposium on Parallel and Dis-

tributed Processing (IPDPS’10)”, Atlanta, GA, Apr. 2010.
[28] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,

“I/O performance challenges at leadership scale,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and

Analysis (SC’09), Portland, OR, Nov. 2009.
[29] H. Shan and J. Shalf, “Using IOR to analyze the I/O performance for

HPC platforms,” in in Cray Users Group Meeting (CUG), Washington,
DC, May 2007.

[30] Y. Kim, Gunasekaran, D. R.and Shipman, G.M.and Dillow, Z. Zhang,
and B. Settlemyer, “Workload Characterization of a Leadership Class
Storage Cluster,” in Petascale Data Storage Workshop (PDSW), Nov
2010.

